Radiometric age dating definition relationship

Radiometric Dating and the Geological Time Scale

radiometric age dating definition relationship

Lectures will focus on absolute dating techniques. Radiometric Dating tools which allow us to determine the absolute age of many rocks and/or minerals. The decay equation can be used to show the relationship of the decay constant l to. The mathematical expression that relates radioactive decay to geologic t is age of the sample: D is number of atoms of the. Specific examples: When radiometric dating "just works" (or not) infill and the surrounding rock will reveal the true relative age relationships.

Each increment of time in the stratigraphy could be characterized by a particular assemblage of fossil organisms, formally termed a biostratigraphic "zone" by the German paleontologists Friedrich Quenstedt and Albert Oppel.

These zones could then be traced over large regions, and eventually globally. Groups of zones were used to establish larger intervals of stratigraphy, known as geologic "stages" and geologic "systems". The time corresponding to most of these intervals of rock became known as geologic "ages" and "periods", respectively.

radiometric age dating definition relationship

By the end of the s, most of the presently-used geologic periods had been established based on their fossil content and their observed relative position in the stratigraphy e. These terms were preceded by decades by other terms for various geologic subdivisions, and although there was subsequent debate over their exact boundaries e. By the s, fossil succession had been studied to an increasing degree, such that the broad history of life on Earth was well understood, regardless of the debate over the names applied to portions of it, and where exactly to make the divisions.

All paleontologists recognized unmistakable trends in morphology through time in the succession of fossil organisms.

Radiometric dating - Wikipedia

This observation led to attempts to explain the fossil succession by various mechanisms. Perhaps the best known example is Darwin's theory of evolution by natural selection. Note that chronologically, fossil succession was well and independently established long before Darwin's evolutionary theory was proposed in Fossil succession and the geologic time scale are constrained by the observed order of the stratigraphy -- basically geometry -- not by evolutionary theory.

Calibrating the Relative Time Scale For almost the next years, geologists operated using relative dating methods, both using the basic principles of geology and fossil succession biostratigraphy. Various attempts were made as far back as the s to scientifically estimate the age of the Earth, and, later, to use this to calibrate the relative time scale to numeric values refer to "Changing views of the history of the Earth" by Richard Harter and Chris Stassen.

Most of the early attempts were based on rates of deposition, erosion, and other geological processes, which yielded uncertain time estimates, but which clearly indicated Earth history was at least million or more years old.

A challenge to this interpretation came in the form of Lord Kelvin's William Thomson's calculations of the heat flow from the Earth, and the implication this had for the age -- rather than hundreds of millions of years, the Earth could be as young as tens of million of years old.

This evaluation was subsequently invalidated by the discovery of radioactivity in the last years of the 19th century, which was an unaccounted for source of heat in Kelvin's original calculations.

With it factored in, the Earth could be vastly older. Estimates of the age of the Earth again returned to the prior methods. The discovery of radioactivity also had another side effect, although it was several more decades before its additional significance to geology became apparent and the techniques became refined.

Because of the chemistry of rocks, it was possible to calculate how much radioactive decay had occurred since an appropriate mineral had formed, and how much time had therefore expired, by looking at the ratio between the original radioactive isotope and its product, if the decay rate was known. Many geological complications and measurement difficulties existed, but initial attempts at the method clearly demonstrated that the Earth was very old.

In fact, the numbers that became available were significantly older than even some geologists were expecting -- rather than hundreds of millions of years, which was the minimum age expected, the Earth's history was clearly at least billions of years long. Radiometric dating provides numerical values for the age of an appropriate rock, usually expressed in millions of years. Therefore, by dating a series of rocks in a vertical succession of strata previously recognized with basic geologic principles see Stratigraphic principles and relative timeit can provide a numerical calibration for what would otherwise be only an ordering of events -- i.

The integration of relative dating and radiometric dating has resulted in a series of increasingly precise "absolute" i. Given the background above, the information used for a geologic time scale can be related like this: How relative dating of events and radiometric numeric dates are combined to produce a calibrated geological time scale. In this example, the data demonstrates that "fossil B time" was somewhere between and million years ago, and that "fossil A time" is older than million years ago.

Note that because of the position of the dated beds, there is room for improvement in the time constraints on these fossil-bearing intervals e. A continuous vertical stratigraphic section will provide the order of occurrence of events column 1 of Figure 2. These are summarized in terms of a "relative time scale" column 2 of Figure 2. Geologists can refer to intervals of time as being "pre-first appearance of species A" or "during the existence of species A", or "after volcanic eruption 1" at least six subdivisions are possible in the example in Figure 2.

For this type of "relative dating" to work it must be known that the succession of events is unique or at least that duplicate events are recognized -- e.

Unique events can be biological e. Ideally, geologists are looking for events that are unmistakably unique, in a consistent order, and of global extent in order to construct a geological time scale with global significance. Some of these events do exist. For example, the boundary between the Cretaceous and Tertiary periods is recognized on the basis of the extinction of a large number of organisms globally including ammonites, dinosaurs, and othersthe first appearance of new types of organisms, the presence of geochemical anomalies notably iridiumand unusual types of minerals related to meteorite impact processes impact spherules and shocked quartz.

These types of distinctive events provide confirmation that the Earth's stratigraphy is genuinely successional on a global scale. Even without that knowledge, it is still possible to construct local geologic time scales.

Although the idea that unique physical and biotic events are synchronous might sound like an "assumption", it is not. It can, and has been, tested in innumerable ways since the 19th century, in some cases by physically tracing distinct units laterally for hundreds or thousands of kilometres and looking very carefully to see if the order of events changes.

Geologists do sometimes find events that are "diachronous" i. Because any newly-studied locality will have independent fossil, superpositional, or radiometric data that have not yet been incorporated into the global geological time scale, all data types serve as both an independent test of each other on a local scaleand of the global geological time scale itself. The test is more than just a "right" or "wrong" assessment, because there is a certain level of uncertainty in all age determinations.

For example, an inconsistency may indicate that a particular geological boundary occurred 76 million years ago, rather than 75 million years ago, which might be cause for revising the age estimate, but does not make the original estimate flagrantly "wrong".

It depends upon the exact situation, and how much data are present to test hypotheses e. Whatever the situation, the current global geological time scale makes predictions about relationships between relative and absolute age-dating at a local scale, and the input of new data means the global geologic time scale is continually refined and is known with increasing precision. This trend can be seen by looking at the history of proposed geologic time scales described in the first chapter of [Harland et al,p.

The unfortunate part of the natural process of refinement of time scales is the appearance of circularity if people do not look at the source of the data carefully enough. Most commonly, this is characterised by oversimplified statements like: When a geologist collects a rock sample for radiometric age dating, or collects a fossil, there are independent constraints on the relative and numerical age of the resulting data.

Stratigraphic position is an obvious one, but there are many others. There is no way for a geologist to choose what numerical value a radiometric date will yield, or what position a fossil will be found at in a stratigraphic section. Every piece of data collected like this is an independent check of what has been previously studied. The data are determined by the rocks, not by preconceived notions about what will be found.

Every time a rock is picked up it is a test of the predictions made by the current understanding of the geological time scale.

The time scale is refined to reflect the relatively few and progressively smaller inconsistencies that are found. This is not circularity, it is the normal scientific process of refining one's understanding with new data. It happens in all sciences. If an inconsistent data point is found, geologists ask the question: However, this statistical likelihood is not assumed, it is tested, usually by using other methods e. Geologists search for an explanation of the inconsistency, and will not arbitrarily decide that, "because it conflicts, the data must be wrong.

The continued revision of the time scale as a result of new data demonstrates that geologists are willing to question it and change it. The geological time scale is far from dogma. If the new data have a large inconsistency by "large" I mean orders of magnitudeit is far more likely to be a problem with the new data, but geologists are not satisfied until a specific geological explanation is found and tested. An inconsistency often means something geologically interesting is happening, and there is always a tiny possibility that it could be the tip of a revolution in understanding about geological history.

Admittedly, this latter possibility is VERY unlikely. There is almost zero chance that the broad understanding of geological history e. The amount of data supporting that interpretation is immense, is derived from many fields and methods not only radiometric datingand a discovery would have to be found that invalidated practically all previous data in order for the interpretation to change greatly.

So far, I know of no valid theory that explains how this could occur, let alone evidence in support of such a theory, although there have been highly fallacious attempts e. When Radiometric Dating "Just Works" or not A poor example There are many situations where radiometric dating is not possible, or where a dating attempt will be fraught with difficulty.

radiometric age dating definition relationship

This is the inevitable nature of rocks that have experienced millions of years of history: The real question is what happens when conditions are ideal, versus when they are marginal, because ideal samples should give the most reliable dates. If there are good reasons to expect problems with a sample, it is hardly surprising if there are! It contains a mixture of minerals from a volcanic eruption and detrital mineral grains eroded from other, older rocks.

If the age of this unit were not so crucial to important associated hominid fossils, it probably would not have been dated at all because of the potential problems. After some initial and prolonged troubles over many years, the bed was eventually dated successfully by careful sample preparation that eliminated the detrital minerals.

Relative dating

Lubenow's work is fairly unique in characterising the normal scientific process of refining a difficult date as an arbitrary and inappropriate "game", and documenting the history of the process in some detail, as if such problems were typical.

Another example is "John Woodmorappe's" paper on radiometric datingwhich adopts a "compilation" approach, and gives only superficial treatment to the individual dates. Among other problems documented in an FAQ by Steven Schimmrichmany of Woodmorappe's examples neglect the geological complexities that are expected to cause problems for some radiometrically-dated samples.

A good example By contrast, the example presented here is a geologically simple situation -- it consists of several primary i. It demonstrates how consistent radiometric data can be when the rocks are more suitable for dating. For most geological samples like this, radiometric dating "just works". Consider this stratigraphic section from the Bearpaw Formation of Saskatchewan, Canada Baadsgaard et al.

Modified from Baadsgaard et al. The section is measured in metres, starting with 0m at the bottom oldest. This section is important because it places a limit on the youngest age for a specific ammonite shell -- Baculites reesidei -- which is used as a zonal fossil in western North America. It consistently occurs below the first occurrence of Bacultes jenseni and above the occurrence of Baculites cuneatus within the upper part of the Campanian, the second to last "stage" of the Cretaceous Period in the global geological time scale.

The biostratigraphic situation can be summarized as a vertically-stacked sequence of "zones" defined by the first appearance of each ammonite species: About 40 of these ammonite zones are used to subdivide the upper part of the Cretaceous Period in this area.

Dinosaurs and many other types of fossils are also found in this interval, and in broad context it occurs shortly before the extinction of the dinosaurs, and the extinction of all ammonites. The Bearpaw Formation is a marine unit that occurs over much of Alberta and Saskatchewan, and it continues into Montana and North Dakota in the United States, although it adopts a different name in the U.

The numbers above are just summary values. Other examples yield similar results - i. The results are therefore highly consistent given the analytical uncertainties in any measurement. Eberth and Braman described the vertebrate paleontology and sedimentology of the Judith River Formation, a dinosaur-bearing unit that occurs stratigraphically below the Baculites reesidei zone the Judith River Formation is below the Bearpaw Formation.

It should therefore be older than the results from Baadsgaard et al. An ash bed near the top of the Judith River Fm. Again, this is compatible with the age determined for the Baculites reesidei zone and its relative stratigraphic position, and even with the relative position of the two samples within the same formation.

How do these dates compare to the then current geological time scale? Here are the numbers they applied to the geological boundaries in this interval, compared to the numbers in the newer studies: Comparison of newer data with the Harland et al. As you can see, the numbers in the rightmost column are basically compatible. Skeptics of radiometric dating procedures sometimes claim these techniques should not work reliably, or only infrequently, but clearly the results are similar: Most of the time, the technique works exceedingly well to a first approximation.

However, there are some smaller differences. The date for the Baculites reesidei zone is at least 0. Well, standard scientific procedure is to collect more data to test the possible explanations -- is it the time scale or the data that are incorrect? Obradovich has measured a large number of high-quality radiometric dates from the Cretaceous Period, and has revised the geological time scale for this interval.

Specifically, he proposes an age of This is completely compatible with the data in Baadsgaard et al. Conclusions Skeptics of conventional geology might think scientists would expect, or at least prefer, every date to be perfectly consistent with the current geological time scale, but realistically, this is not how science works.

The age of a particular sample, and a particular geological time scale, only represents the current understanding, and science is a process of refinement of that understanding. In the simplest ideal situation,the decay equation is utilized by making the following substitutions: Therefore, if we know the decay constant l and can accurately measure D and P, in principle, we can determine the absolute age.

radiometric age dating definition relationship

Accurate measurement of either the absolute or relative abundance of trace quantities of radioactive isotopes requires sophisticated instruments, known as mass spectrometers, and instrument operators who really know what they are doing. The technique appears to be simple and straightforward, but is actually very difficult and time-consuming.

It is not a trivial task! Starting the Radiometric Clocks 1. Living organisms continually exchange carbon with the atmosphere through the process of photosynthesis. When the organism dies, however, exchange of carbon ceases and the carbon present in the organism becomes isolated.

This event death of the organism marks the effective starting of the C 14 clock. One of the most common types of material used in C 14 dating is charcoal e. These rocks form by the cooling and crystallization of hot silicate liquids magma or lava. As cooling proceeds from high temperatures ca. A growing mineral may trap small amounts of a radioactive isotope within its crystal structure. When this occurs, the radioactive atoms become effectively isolated or trapped.

Subsequent disintegration will produce daughter atoms replacing the original radioactive parents.

Radiometric Dating and the Geological Time Scale

In many respects, igneous rocks are the easiest to date because the starting of the clocks are unambiguous. Sedimentary rocks are, to a large degree, made from fragments of pre-existing rocks that have been broken, weathered, transported and ultimately deposited in ocean basins.

The original source for the sediment may have been diverse, consisting of different rock types of different ages. Consequently, a sedimentary rock such as a sandstone or a shale is likely to consist of framgents of different age. Radiometric dating of sedimentary rocks is, therefore, not common.